

Presentation of the Study "Transport of semi-trailers in UCT through Switzerland"

Bern, 28.11.2012

Programme

Introduction

Frank Furrer, VAP

Development of Combined Transport: From the early stages to the most important production form of rail freight transport

Study on the transport of semi-trailers in UCT through Switzerland

Subject "4-metre-corridor"

Questions & Answers

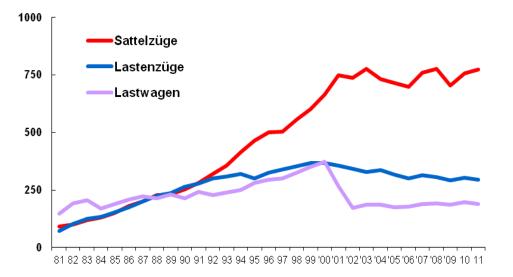
Martin Burkhardt, UIRR

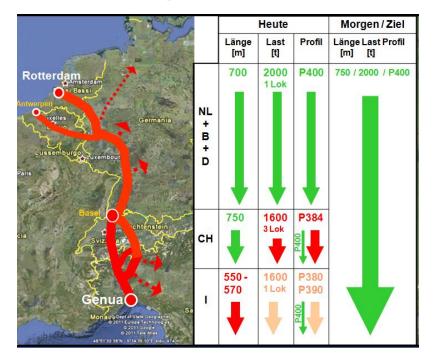
Rainer Mertel, KombiConsult

Rolf Büttiker, CargoForum

Introduction

Frank Furrer, Secretary General of VAP Verband der verladenden Wirtschaft


Bern, 28.11.2012


Transhipment potential semi-trailers

Transalpine road transport CH per vehicle categories Vh/Year

Infrastructure bottleneck for P400 transports

- > Corridor Rotterdam-Genoa:
 Parametre for freight transport
- > Feeder lines to Gotthard-Base tunnel
- > Consultation 4-metre-corridor September 2012

The development of Combined Transport:

From the early stages to the most important production form of rail freight transport

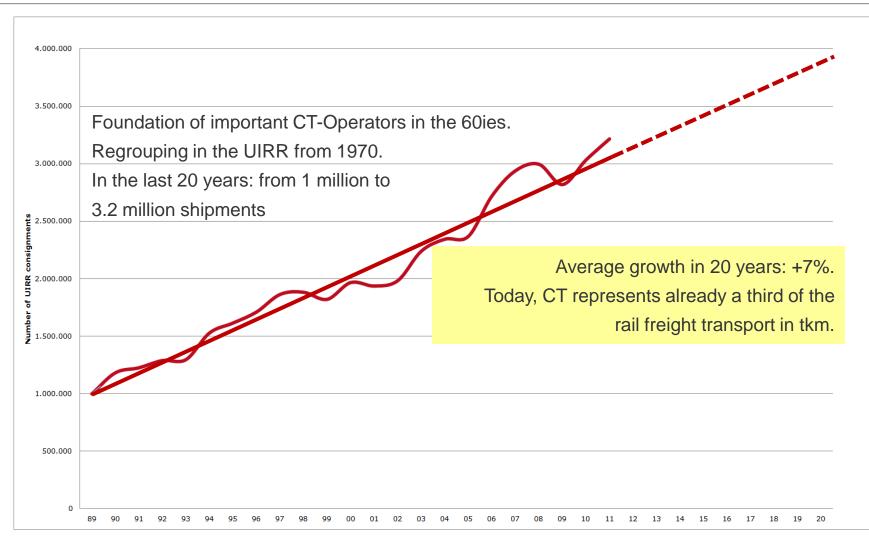
Martin Burkhardt, Director General UIRR 28 November 2012, Bern

UIRR: Organisation and tasks

International Union of combined road-rail transport companies (UIRR)

Supporting the development of Combined Road-Rail Transport in Europe

The UIRR-members carry out around 50% of the CT in Europe.


Liaison Office Brussels

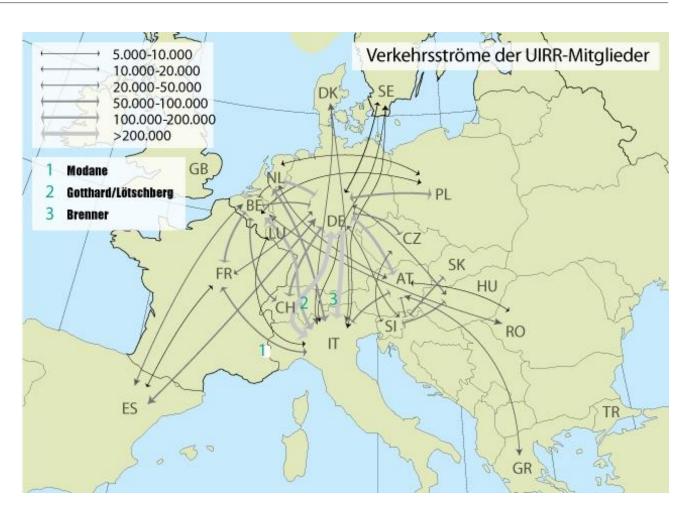
- Promotion
- Coordination
- Services
- Projects
- Address: Rue Montoyer 31 box 11 1000 Brussels (Belgium) www.uirr.com headoffice.brussels@uirr.com

Member companies (17 CT operators)

- Organisation and marketing of CT
- Making available of complete trains on a European network
- Investments in wagons and modern IT-systems
- Management of terminals
- Headquarters in 15 (EU/non EU) countries

The success story of Combined Transport

A UIRR shipment is equivalent to the capacity of a truck on the road (2.0 TEU).

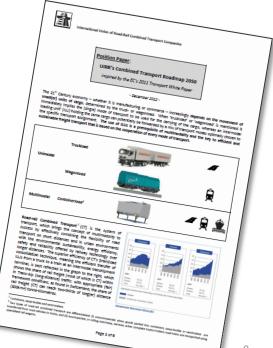

Average distance of a CT shipment on rail: 600 - 700 km.

Alpine transit The North-South transport prevails. 2/3 of the international transports on transalpine corridors.

Reasons:

- Better framework conditions
- Increased competition
- Good railway infrastructure

The opening of the Alpine Base tunnels Lötschberg, Gotthard, later Brenner and Lyon-Turin offers CT new growth possibilities on the most important axes.


The main objectives for long distance goods transport and CT

- 30% of the long distance road freight transport over 300km should be transhipped to rail, inland navigation or short distance maritime transport by 2030 and 50% by 2050.
- Reduction of the dependence on oil through modal shift.
- Reduction of the GHG emissions of transport (current CT already -75% CO₂)

The modal shift objectives mentioned in European Commission's White Paper are reachable. They require a 5% yearly CT-growth. The UIRR is working out an action plan on how to reach the modal shift objectives.

Main tasks for Member States and EU-Commission:

- Long-term stable framework conditions, i.e. Regarding weights and dimensions as numerous stakeholders must invest in CT
- Fair competition conditions between the transport modes for prices reflecting all the costs
- Measures to support modal shift
- Liberalisation and interoperability of rail transport
- Investments in an efficient rail network for freight

Conditions for the success of CT until today

Until now the development of Combined Transport was marked by standardisation. Transition from horizontal transhipment of road vehicles to vertical transhipment of intermodal UCT* loading units.

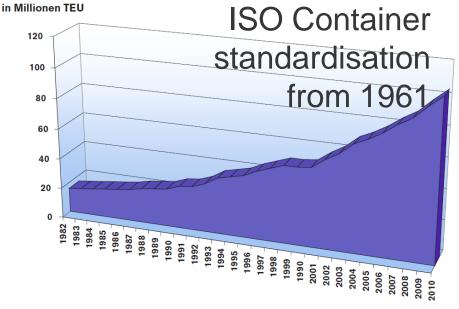
The only horizontal technique remaining is the Rolling Motorway/Road, which does not require any particular terminal and which can universally accept semi-trailers and road trains, for specific markets and as starting technique for UCT.

Recently, more and more new concepts of horizontal transhipment are being proposed, i.e. CargoBeamer and Modalohr.

As a basis for the elaboration of the action plan for the future modal shift to rail, UIRR has ordered a study to examine the operational and economical aspects of these two new techniques in comparison with UCT.

CT: from the early stages to a standardised system

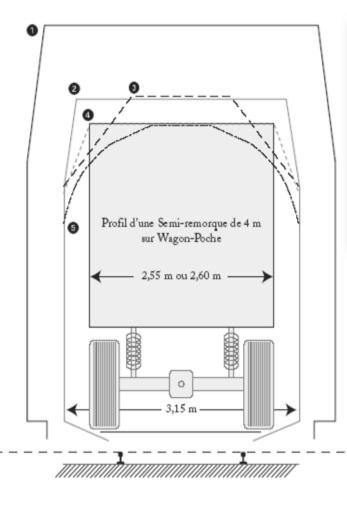
Historical CT-techniques 1964-1986


Example of techniques with horizontal transhipment which were abandoned because the loading was time and staff consuming.

Transition to vertical loading and introduction of the universal pocketwagons from 1973 which can transport semi-trailers, swap bodies and containers.

Standardisation: basis of the success of worldwide container transport

Weltcontainerverkehr



Standardisation is also the basis of continental CT's success

CT: from exceptional transport to regular transport

Tunnels in particular limit the loading gauge. CT exceeds the normal loading gauge of railway undertakings

Safety issues: see accident in USA

Adapting the infrastructure is expensive. The alternative: wagons with lower platforms and small wheels require higer investments and operational costs. Where does the system optimum lie?

Measurement in transport of non-codified loading units

At road entry – rail exit on terminals i.e. in Rolling Motorway – Modalohr – CargoBeamer

Standardisation through codification in UCT

In order to carry out CT on an industrial scale and to prevent from constantly re-measuring loading units, codification was introduced in the 70ies.

A system composed of three elements for efficient and safer operation.

1. Codification plate on the loading unit

2. Marking on wagons

3. Codification of the lines wanching Augsburg München Mulhouse St.Polte Wels Basel Singen inz Salzburg Bad Konstanz /esou Basel Birrfeld indau Kufstein Schaffhausen Selzthal Kapfenberg Worgl SBB Vàlfurt Bischofshofen P50/380 Innsbruck P50/380 Zürich St.Michael Aarau Hall Buchs Bludenz Landeck Schwarzach 'verdon Ber SG Graz ۰ P60/384 Brennerd Graz Süd Lausanne Villach Bellinzon Iselle Fürnitz, Genève Tarvisio Lúgano Trento Udine Ljubljana Chiasso • Villa Opicina nbéry Gallarate Treviso Desio Vicenza Verona Busto Arsizio Oleggio ervignano ·P30/341 Trieste Mestre Novara Piacenza Padova Koper Toring Alessandria Voghera Riteka Fiorenzuola Rivalta Scrivia

CEN standardised swap bodies and containers

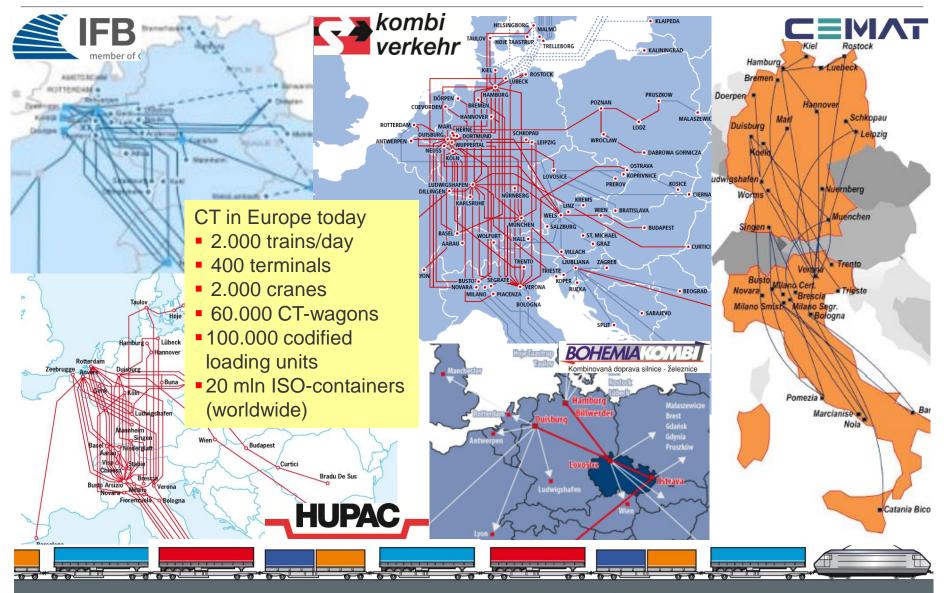
Joint elements for compatibility and safety

Corner fittings and spigots for an easy transfer between transport modes

Container with corner fittings

Wagons with spigots

Cranes with grappler arms (swap bodies with grapple zones and corner fittings below)


Standards also for the infrastructure

UN/ECE: AGTC-Agreement EU: TSI-Infrastructure (route categories) United Nations Economic Commission for Europe Aim for construction of new routes and on goods UNECE corridors is loading gauge C, enabling the IMPORTANT INTERNATIONAL RAILWAY AND COMBINED TRANSPORT LINES transport of semi-trailers in standard pocket European Agreement on Main International Railway Lines wagons and of road vehicles on low floor (AGC) European Agreement on Important International Combined Transport Lines and Related Installations wagon. (AGTC) AGC and AGTC networks Newly proposed AGTC lines (under consideration)

Network of CT-direct trains in Europe – Train change per Gateway

Mixed transport of all loading units to reach complete train volumes



During the last 40 years, CT has been marked by

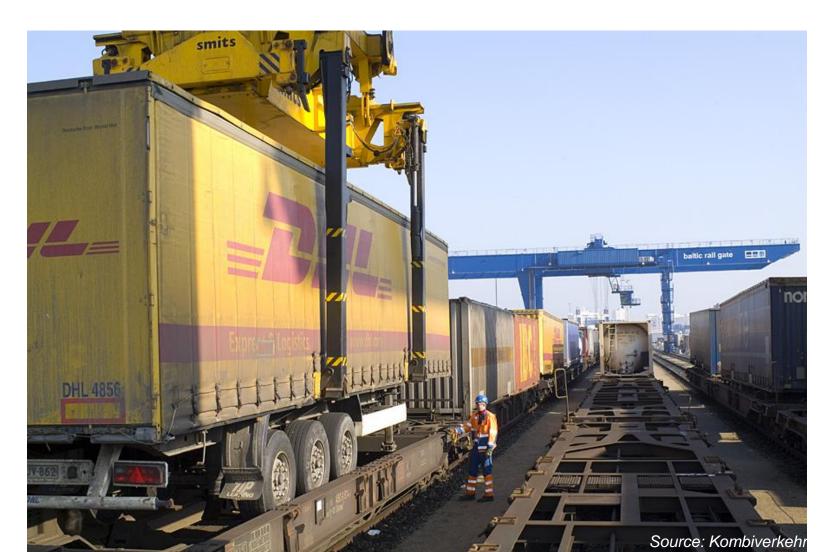
- Standardisation of loading units, wagons, cranes, infrastructure for an industrial production system.
- Extension of the offer through specific techniques on specific markets.

Are these also the foundations for the future?

Which role can innovations and horizontal transhipment techniques play for the future evolution of CT?

Thank you for your attention!

Presentation of the UIRR Study

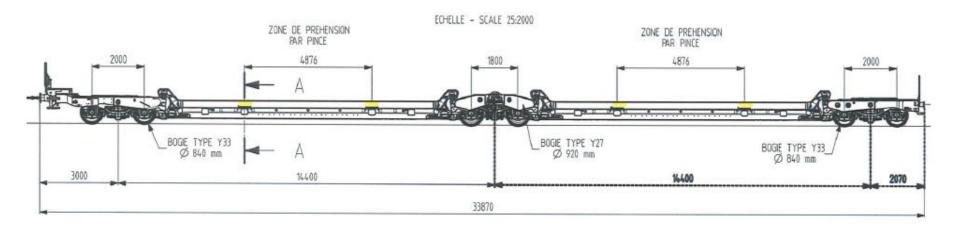

Bern – 28 November 2012

Transport of semi-trailers in unaccompanied Combined Transport through Switzerland

Rainer Mertel – KombiConsult, Frankfurt am Main

UCT-actual: vertical transhipment of craneable semi-trailers on pocket wagons

2012-11-28 Chart 22


Modalohr NA for horizontal transhipment

Modalohr UIC: vertical transhipment of craneable semi-trailers on specific pocket wagons (also horizontal transhipment?)

CargoBeamer: horinzontal transhipment of semi-trailers

Description of the tasks

- System comparison of the four technologies, especially regarding their specific cost components
- Comparative cost analysis of appropriate technologies to reach the Swiss traffic transfer objective through the transfer of semi-trailer transports

Determination and comparison of performance parameters

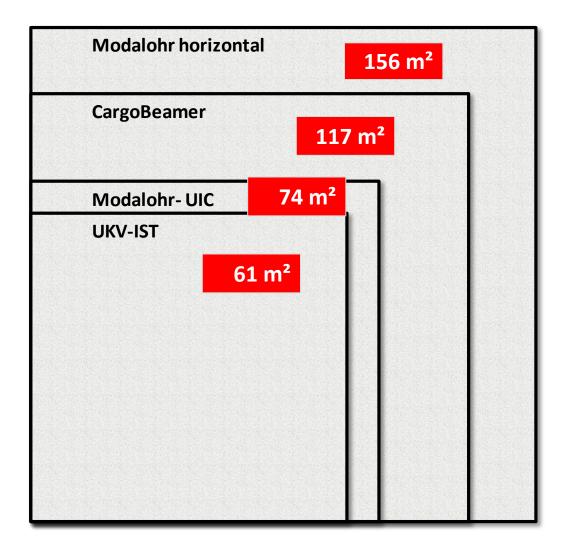
- Train capacity
- Capacity of a transhipment yard
- Surface requirements and investment costs of a transhipment yard
- System costs for a Terminal-Terminal CT-transport
- Assumption for all technologies: they are all implemented in a dedicated system (terminal, wagon), thus only semi-trailers are handled and shipped.

Train capacities

Max. number of semi-trailers per train, which could be shipped by full exploitation of the train-parameters of the corridor (700 m; 1.800 t)

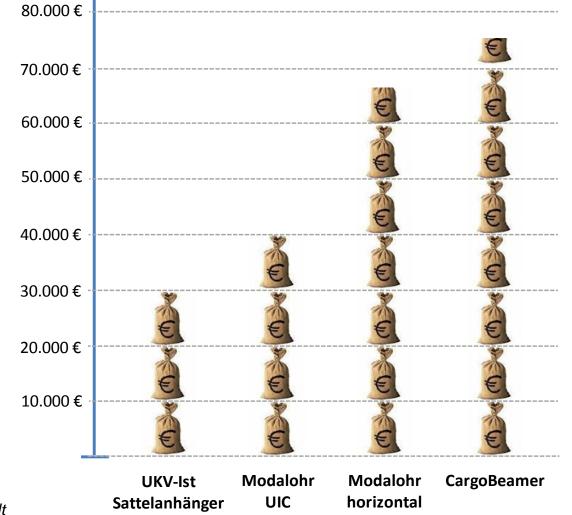
Technologie	Ladeeinheit (LE)			Magan	Σ (LE +	Max. Zug-	Max. Anzahl
	Ladung	Tara	Gesamt	Wagen	Wagen)	gewicht	LE je Zug
		(LE)					
UKV-lst Sattelanhänger	20	7,5	27,5	17,3	44,8	1.800	40,2
Modalohr horizontal	20	7,2	27,2	20,3	47,5	1.800	37,9
Modalohr UIC	20	7,5	27,5	20,3	47,8	1.800	37,7
CargoBeamer	20	7,2	27,2	31,0	58,2	1.800	31,0
Nananananananananananananananananananan	iteresensensensensensensensensensensen					***************************************	Announcementer and a second

System comparison


Transhipment capacities

Sattelanhänger je Zug	Be- + Ent- ladezeit Zug	Zug- folgezeit	Zugpaare je VT	Umschlag- kapazität	
(LE)	(min)	(min)		(LE je VT)	(LE p.a.)
34	68	78	16	1.088	272.000
32	256	316	4	256	64.000
32	96	106	12	768	192.000
26	10	180	7	364	91.000
	je Zug (LE) 34 32 32	je Zugladezeit Zug(LE)(min)3468322563296	je Zugladezeit Zugfolgezeit(LE)(min)(min)346878322563163296106	je Zugladezeit Zugfolgezeitje VT(LE)(min)(min)34687816322563164329610612	je Zugladezeit Zugfolgezeitje VTkapa(LE)(min)(min)(LE je VT)3468781661.088322563164256329610612768

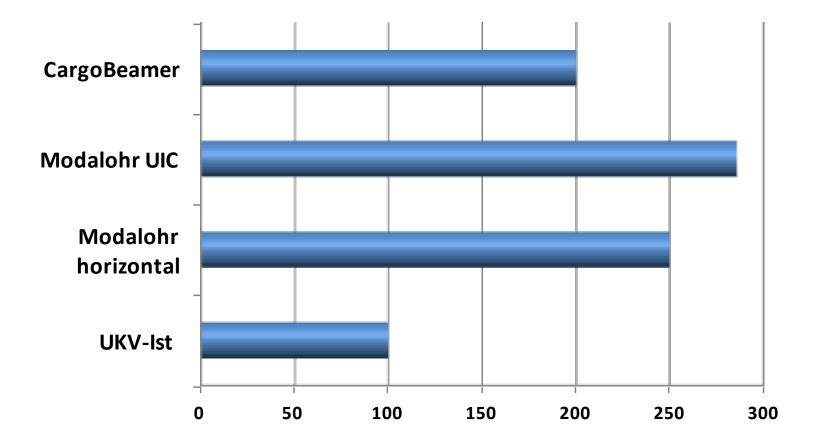
Assumption average train load of 85%


Specific surface requirements for the transhipment capacity of 1 semi-trailer

Source: KombiConsult

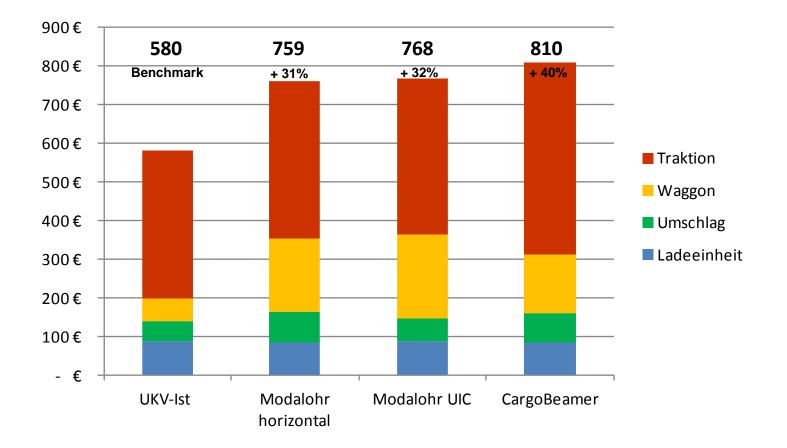
2012-11-28 Chart 30

Specific investment costs for the transhipment capacity of 1 semi-trailer



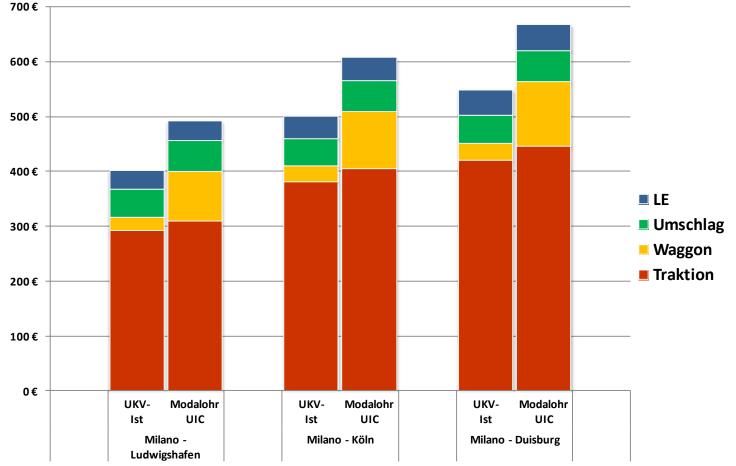
Source: KombiConsult

2012-11-28 Chart 31



Investment costs for wagons per semi-trailer space (indexed)

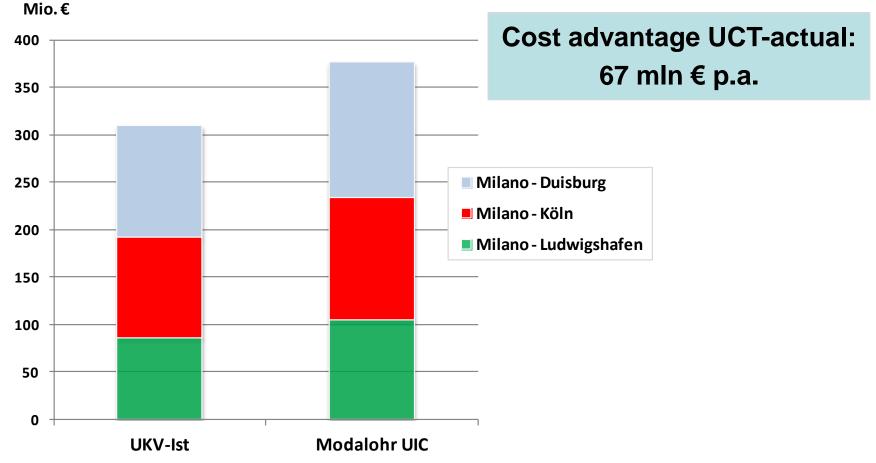
System costs for the terminal-terminal transport of a semi-trailer on the Köln-Milano route



Assumptions

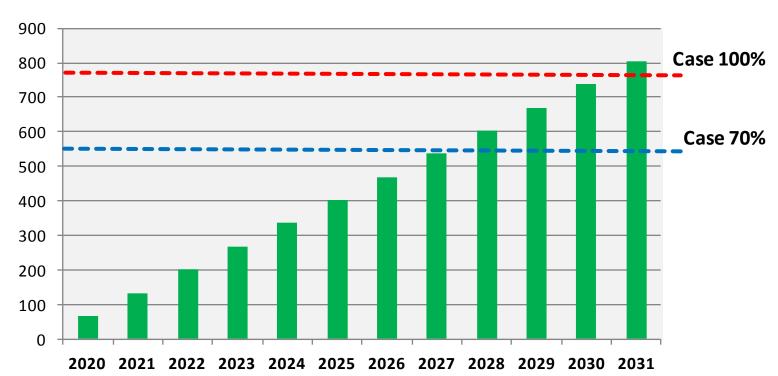
- Appropriate technologies:
 - UCT-actual, if 4-meter-corridor is implemented on the Gotthard-axis
 - Modalohr-UIC, if feasibility is certain and wagon is authorised
- Technologies considered as not appropriate:
 - CargoBeamer: requires a higher increase of gauge than UCT-actual
 - Modalohr-horizontal: adaptation of the whole rail infrastructure DE-IT
- Calculated tanshipment requirement of 639.000 semi-trailers in 2020 for a semi-trailer share in transalpine road freight transport of 75% (2011: 70%)
- Optimal operating conditions, i.e. sufficient train paths; the train can be reloaded immediately after unloading.

Costs of UCT-actual and Modalohr-UIC for transport of semi-trailers on three sample routes Milano – Duisburg/Köln/Ludwigshafen



Source: KombiConsult

2012-11-28 Chart 35


Yearly total costs of UCT-actual and Modalohr-UIC if implementation of the 2020 transfer requirements

Source: KombiConsult

"Pay-back-Period" for the investment costs for 4-metre-corridor of 940 mIn CHF (783 mIn €) when using UCT-actual vs. Modalohr-UIC

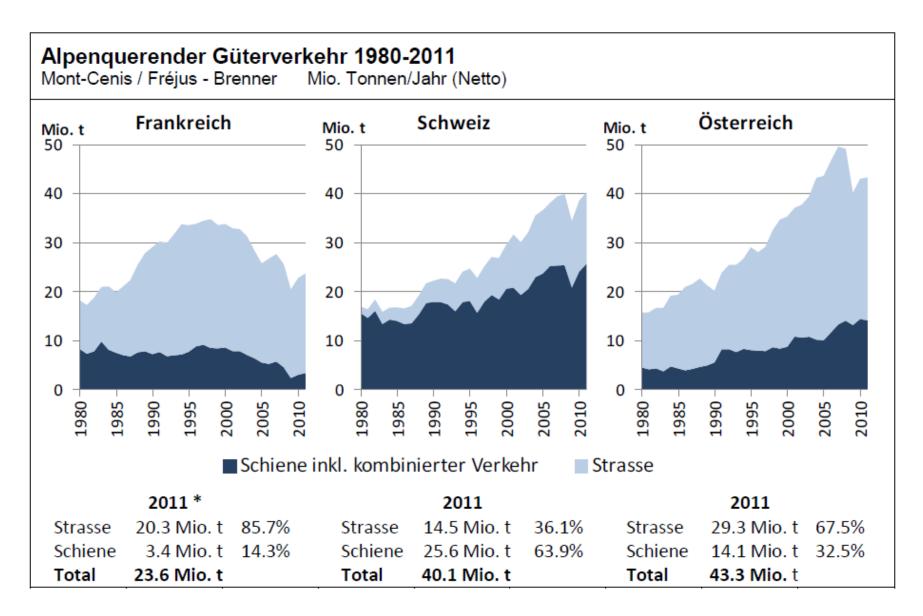
Mio.€

Conclusions

- CargoBeamer and Modalohr-horizontal cannot:
 - solve loading gauge problems;
 - transport craneable semi-trailers, this however comparatively leads to high and probably long-term subsidy needs.
- Modalohr-UIC (insofar as feasibility proven) can solve gauge problems without infrastructure investments but some questions remain:
 - more than 20% higher costs than UCT-actual (additional subsidy needs?);
 - still considerably more expensive, if vertical and horizontal Modalohrsystems would have to be combined; and also no interoperability with UCTactual;
 - "Exceeding" the gauge tolerances increases vulnerability (safety?) and complexity and goes against the success of standardisation, the simplification of CT-technologies and the structuring of operations

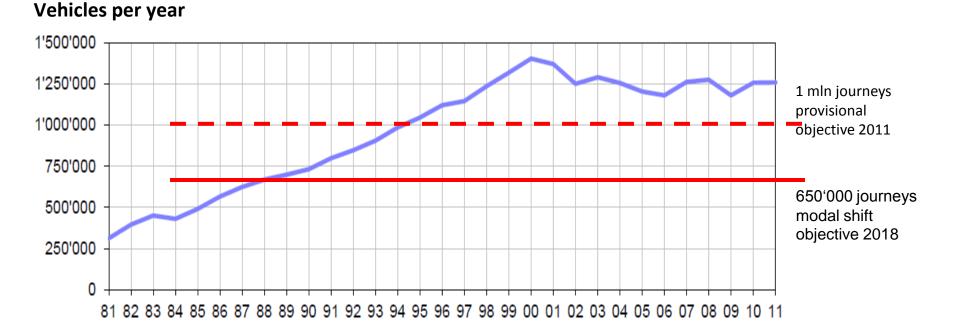
Conclusions

- UCT-actual needs the 4-m-corridor in order to reach the transfer objectives. The required infrastructure investments amount to:
 - "Payback" after 8-12 years in comparison with the extra costs for Modalohr-UIC
 - Building of a sustainable competitive infrastructure
- UCT-actual has greater flexibility Transport of all sorts of CT loading units – and therefore better meets the demands of various logistics markets.
- If a "provisory solution" to increase the transfer effect is seen as (politically) absolutely necessary, shouldn't then the exceptions (giving up safety tolerances in lower gauge) also apply for UCT-actual with pocket wagons?

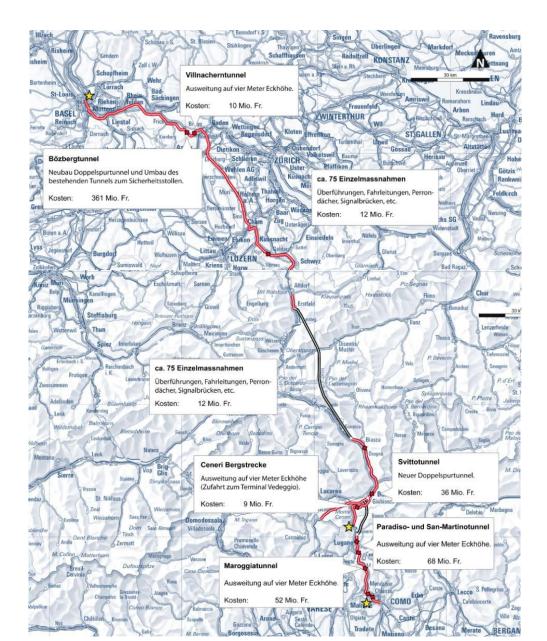


Topic "4-metre-corridor"

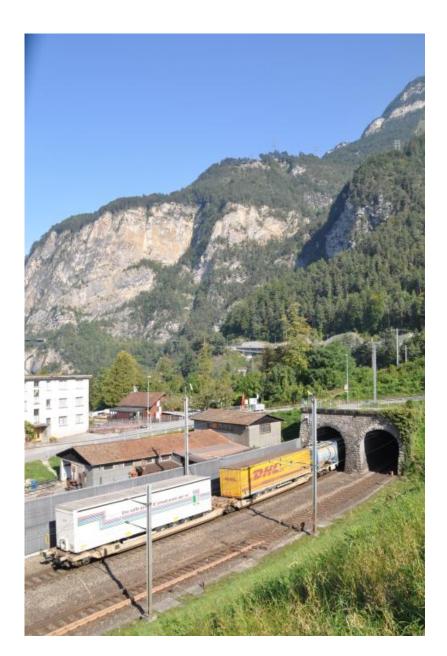
Rolf Büttiker, former Council of States and Chairman of Cargo Forum Switzerland


Transit-transport policy of Switzerland in international comparison

Further measures required for approaching the modal shift objective


Heavy freight vehicles via the Swiss Alps 1981 – 2011

Gotthard 2016, Ceneri 2019, 4-metre-corridor 2020-2022?



Four-metre-corridor Gotthard-Axis

- Rail transport of trailer trucks with 4 metre corner height
- by 2020, 210.000 truck journeys could be avoided instead of 70.000 with NEAT alone
- Costs 940 mln CHF/ Financing through FinöV-Funds/BIF
- Inclusive pre-financing of the required gauge increase in Italy

Solutions with specific rolling material: can Switzerland afford another isolated solution?

- Capacity limited, isolated solutions
- Provisional solution and supplement to four-metre-corridor
- Higher costs and higher subsidy needs in comparison to UCT-actual

Open questions

- Subsidy efficiency?
- Commercial viability?
- Market acceptance transport of not craneable semi-trailers?
- Safety risk?

Modalohr

Rolling Motorway

Questions & Answers