

ITEC – Carbon footprint calculator

for intermodal terminals

Brussels, 04.12.2014

Lars Deiterding (HaCon)

ITEC – Partners and their roles

Partner		Terminal processes	Terminal technologies	Information modelling	Software development	Environm. issues
HCN	Core team: ITEC development	~	\checkmark	~	~	
КС		~	✓	~		
PE	and ownership			~	~	~
IBI	Application team: Data collection Validation Demonstration	~	✓			
JER		~	✓			
ADRIA		~	✓			
IFB		~	✓			
UIRR		~	\checkmark			✓

Main idea: Intermodal Terminal Eco-Efficiency Calculator (ITEC)

- To enable terminal operators to accurately calculate their current GHG performance;
- To identify where terminal "hot spots" are with regard to energy consumption and GHG emission
- To determine what impacts different measures in the context of a terminal have, either in an ex ante (scenario) or ex post (monitoring) perspective.

ITEC – Functional specification

- ITEC refers to the terminal as functional entity
 - considering all energy/GHG relevant processes and facilities,
 - regardless the recipients of the energy bills.

European

Commission

Traffic • Software • Service

ITEC – Development phases

Model/tool development focusses on rail-road transhipment and associated terminal components/services (\rightarrow demonstration cases)

SUSTAINABILITY PERFORMANC

KombiConsult

Traffic • Software • Service

European

Commission

ITEC – Position within the intermodal transport chain **Intermodal Transport Chain** Rail Shipper Road Road Store * Methodology for calculation and declaration of DIN EN 16258* energy consumption and GHG emissions of transport services (freight and passengers), March 2013. **Intermodal Terminal** Warehouses & transhipment facilities not covered by the norm, yet. HaCon 6 KombiConsult Europear Traffic • Software • Service

Commissio

ITEC – Main Process Groups (MPG)

 _							_
Ma	in process	Terminal processes included	Basic	Advanced	Total		
group			terminal	terminal	terminal	/	
			activities	services	operation		
1	Arrival	Movements rail/road/barge					
		from terminal boundary					
		ightarrow transhipment area					
2	Transhipment	Transhipment of loading units,					
		incl. intermediate storage					Br
3	Intermediate	Rail:					sir
	operation	- Change of transhipment track					an
		occupation (standing/floating				/	- Fr
		procedure),				{	sp
		- Damaged wagon exchange,					- 0
		- Wagon group transition					p
4	Departure	Movements rail/road/barge					- Re
		from transhipment area					p
		\rightarrow terminal boundary					
5	Additional	Empty/loaded container depot,					
	services	reefer storage, hazardous LU					
		storage, internal truck transfer					
6	Terminal	Offices, suprastructure (other					
	supply/	than transhipment facilities),					
	disposal	illumination etc.					

Break down into single process steps and assign

- Energy consumers with specific consumption

- Operational effort,

process step duration

- Relevant volume,

process frequency

TERMINAL SUPPLY & DISPOSAL

European

Commission

ITEC - Model implementation in GaBi

GaBi is the most widely used product sustainability solution on the planet

- Helps businesses achieve optimal product sustainabilty performance:
 - Environmental
 - Social
 - Economic
- GaBi is a modelling, reporting & diagnostic software tool that drives product sustainability performance during design, planning and production.
- Powerful LCA tools and databases for product and process sustainability

Product Sustainability Performance

Europear

ITEC – Application (1) Status: November 2014

- April 2014: Roll-out of ITEC prototype ready to use.
- May 2014: First application of ITEC prototype (use case: Stockholm Arsta)
- 26.05.2014: Presentation of results on the occasion of official opening of the new Stockholm Arsta terminal and to AGORA group
- September 2014: Neuss application finalised,
- October 2014: Bologna application finalised
- November 2014: Antwerp Combinant application finalised, Ljubljana and Antwerp Zomerweg ongoing

ITEC – Application (2) Input mask (example: rail arrival parameters)

- + Terminal supply
- + Additional Services

European

Commission

+

HaCon

ITEC – Application (3) Results – The i-report

- The report is generated automatically,
- Changes of results corresponding to modified data input is displayed ad hoc (desktop version),
- The report consists of tables, graphic presentations and connecting text. Thus, it can be provided to the customer without any further processing. It is a real standard product itself.
- The report is available in pdf and in Word (rtf) format. The latter allows for e.g. integrating the i-report into an overall document, if required,
- Results are displayed on different aggregation levels. This enables detailed identification of "hot spots" and of contributions of single greening measures.

ITEC – Application (4) Results – Example: Overall carbon footprint

Traffic • Software • Service

HaCon

ITEC – Application (6) Results – Example: Rail operation

Table 3: Global Warming Potential [kg CO2eq] of the different rail process groups						
	Terminal Status Quo	Terminal Reduction Measure				
1 Arrival: Movement of line locomotive: operating schedule 1	2.188,34	2.188,34				
1 Arrival: Movement of line locomotive: operating schedule 2	994,70	994,70				
1 Arrival: Shunting of operating schedule 1	21.890,32	12.180,76				
1 Arrival: Shunting of operating schedule 2	12.974,81	5.536,71				
2 Intermediate operation schedule 1	6.203,52	3.101,76				
2 Intermediate operation schedule 2	22.332,68	12.919,26				
3 Departure: Movement of line locomotive: operating schedule 1	8.976,67	8.976,67				
3 Departure: Movement of line locomotive: operating schedule 2	4.080,31	4.080,31				
3 Departure: Shunting of operating schedule 1	47.220,09					
3 Departure: Shunting of operating schedule 2	26.428,54					

Traffic • Software • Service

HaCon

ITEC – Providing of results

- Procedure to achieve results within EcoHubs lifetime:
- 2 x 3 basic matrix of "virtual", typical rail/road terminals, calculated with ITEC
- Provide this basic matrix as input to other EcoHubs work packages and for free use (e.g. for EcoTransIt).
- Successive expansion of the basic matrix calculation of additional "real" terminals.

Traffic • Software • Service

ITEC – Main advantages for users (1)

- Very detailed capturing of all energy relevant processes possible (800 ITEC parameters might be modified <u>on demand</u>);
- Single "greening" measures can be implemented (e.g. replacement of transhipment facilities, modified rail/road infrastructure, new road check-in or wagon repair procedure);
- Not only total carbon footprint/"greening" effect, but detailed results:
 - \rightarrow Identification of "hot spots" (e.g. by processes or mode);
 - → Explanation of different specific energy consumptions of terminals;
 - \rightarrow Valuation of greening impact of (single) measures or measure bundles;

allowing

- Adequate allocation of investments in greening measures,
- Conclusions on optimisation on rail/road operation in the terminal.

ITEC – Main advantages for users (2)

- In case of missing terminal specific parameters, experience figures and model calculations are available → Missing terminal specific data does not prevent ITEC applicability;
- ITEC can be used ad hoc (no data interfaces needed, no requirements concerning dedicated IT terminal systems or data exchange formats);
- Standardised template for data gathering (energy consumers and their specific consumption);
- Operational procedures can be clarified with terminal operator via video/telephone conference, using standardised check-list (ca. 2 h);
- Desktop and web application available;
- Consideration of (country/terminal) specific energy mix;

ITEC – Main advantages for users (3)

- Result documentation (Word/PDF) automatically generated;
- Visualisation of parameter modifications (scenarios) on the spot;
- Functional terminal approach closes the knowledge gap to line oriented CO₂ calculators and standards (e.g. CEN 16258);
- Use of proven GaBi software in line with standards (e.g. CEN 16258) and respective methodical basics
 - 1st priority: use of exact, measured data,
 - next priority: use of average data or analogy methods

