

UIRR: the community, cooperation is key

MOU PEERS

INDUSTRY ASSOCIATION PEERS

GOVERNMENTAL BODIES

Baseline: the "backbone of land freight transport over 300km"

THREE QUESTIONS:

- 1. How does Combined Transport compare to unimodal trucking if performing in the capacity of "backbone of land freight transport over distances of 300km"?
 - efficiency + productivity performance
- 2. How much modal shift would be needed until 2050 to qualify Combined Transport as "the backbone"?
 - 1000 billion tonne kilometres
- 3. Are the preconditions of Combined Transport to becoming "the backbone" realistic and affordable?

The Efficiencies of Combined Transport: a study done for UIRR

ENERGY / IMPORTED FOSSIL FUEL DEPENDENCY

Door-to-door Combined Transport uses 70% fewer kilowatt-hours of energy to produce a tonne-kilometre of transport performance compared to the unimodal long-distance trucking alternative.

The energy used by Combined Transport is dominantly grid-electric, which means a direct supply from Europe's increasingly carbon-neutral power generation, thereby reducing the continent's dependence on imported fossil fuels.

INFRASTRUCTURE

The infrastructure of non-road means of transport is more suited to accommodate the heavy axles required by efficient freight transport than road.

The per tonne-kilometre infrastructure degradation of door-to-door Combined Transport is thus a fraction of that of its unimodal road alternative. Slower road degradation means less frequent roadworks resulting in reduced disruptions and works-related congestion.

How does Combined **Transport** measure up?

EFFICIENCY AND COMPETITIVENESS

SAFETY: ACCIDENTS AND CONGESTION

More Combined Transport not only slows road degradation, but also contributes to a dramatic reduction in accidents due to the superior safety performance of non-road modes. This has a further positive impact on the frequency and extent of road congestions thus reducing the external costs of freight transport.

ENVIRONMENT

CLIMATE AND THE

The harmful emissions of doorto-door Combined Transport, such as PM10, PM2,5, NOx and ozone, are a fraction of those produced by unimodal trucking. The greenhouse gas emissions of Combined Transport are up to 90% lower than that of the unimodal trucking alternative. Zero-carbon door-todoor Combined Transport has been demonstrated to be viable with products and technologies already on the market today, making it the most cost-effective solution for Europe.

LABOUR PRODUCTIVITY. WORK/LIFE BALANCE

The number of tonne-kilometres produced per worker employed in a door-to-door Combined Transport operation is multiple times higher than that of workers active in the unimodal trucking alternative. At the same time, Combined Transport jobs offer a superior work/life balance to the workers, especially in comparison to truck drivers, promising to alleviate the looming truck driver shortage.

CONSTANTA, 29.04.2025

What does this mean for the European economy in monetary terms?

ANNUAL SAVINGS FROM 2050

- 70% better energy efficiency = €70 billion
- 50% road infrastructure maintenance expense reduction = €20 billion
- 60% better labour productivity + improved work/life balance = €47 billion
- 95% fewer accidents per tonne-kilometres = €70 billion
- ✓ Up to 90% fewer air pollutant and greenhouse gas emissions = €17 billion
- ✓ 50% estimated reduction of road congestion = **€90 billion**

The annual contribution to the public budgets and to European economic actors would amount to €314 billion, which is equal to €222 billion net of present day internalisation charges (paid through taxes and charges).

Shippers and consignors should implement philosophical changes

- ✓ **Critical Mass** to be achieved by entrusting all regular cargo flows to Combined Transport
 - Increased frequency -> improved reliability and journey speed -> reduces working capital need
 - Regular trains -> better, routine handling by both traffic managers and traction service providers -> better punctuality
 - Routine reception at terminals -> emergence of dedicated CT road-leg hauliers -> improved positioning of consignments
- ✓ Mixed cargo to Combined Transport: not only heavy (high density) but also light (low density) cargo.
 - 740m long trains can not be filled by exclusively heavy consignments (-> longer trains reduce costs and thus lower prices)
 - Mixed cargo within the intermodal loading unit -> high- and low-density cargo can enable optimal loading room utilisation

Limited investments targeted to freight needs

- ✓ TEN-T railway infrastructure on selected lines and with a focus on technical parameters for freight
 - Train length and axle load -> 740m long trains and 22,5t axles
 - **4m loading gauge** -> needed for the carriage of semi-trailers in regular pocket wagons
 - Electrification -> both main lines and last mile rail connections to/from terminals
- ✓ Intermodal assets such as rolling stock, loading units, terminals and digitalisation
 - Various types of intermodal wagons
 - Intermodal loading units -> high- and low-density cargo can enable optimal loading room utilisation
 - Terminals -> upgrades to existing terminals and the construction of new terminals with state aid
 - **Digitalisation** -> both operators and terminals -> enhanced transparency, traceability of intermodal consignments and direct communication with customers

